History and Hermeneutics for Mathematics Education

Storia ed Ermeneutica per la Didattica della Matematica

 

 

 

Calculus by De Morgan (1842)

Il Calculus di De Morgan (1842)


 

 

De Morgan, A. (1842), The differential and integral Calculus, Baldwin and Cradock, London

 

DE MORGAN Augustus (1806-1871)

 

Contents.

 

Introductory chapter.

Chapter I.           On the processes of direct differentiation.

Chapter II.          On the general theory of functional increments and differentiation.

Chapter III.         On algebraical development.

Chapter IV.         Calculus of finite differences.

Chapter V.          On implicit differentiation.

Chapter VI.         Meaning of, and processes in, integration.

Chapter VII.       Trigonometrical analysis.

Chapter VIII.      On the meaning of differential coefficients, and of the first principles of the application of the science to geometry and mechanics.

Chapter IX.         On the connexion of differentiations of different kinds.

Chapter X.          On singular values.

Chapter XI.         On differential equations.

Chapter XII.       Further application to algebra.

Chapter XIII.      Miscellaneous examples and developments.

Chapter XIV.      Application to geometry of two dimensions.

Chapter XV.       Application to geometry of three dimensions.

Chapter XVI.      On the calculus of variations.

Chapter XVII.    Application to mechanics.

Chapter XVIII.   On interpolation and summation.

Chapter XIX.      On the transformation of divergent developments.

Chapter XX.       On definite integrals.

Chapter XXI.      On differential equations and equations of differences.

                            Appendix.

 

See moreover:

Si veda inoltre:

 

L’Hospital, G. de (1716), Analyse des infiniment petits, Papillon, Paris (II ed.).

Newton, I. (1740), Le methode des fluxions et des suites infinites, Debure, Paris (I ed.: 1736).

Riccati, V. (1752), De usu motus tractorii in constructione Aequationum Differentialium Commentarius, Lelio della Volpe, Bologna.

Paulini a S. Josepho (P. Chelucci) (1755), Institutiones analyticæ earumque usus in Geometria, Gessari, Napoli.

Torelli, G. (1758), De nihilo geometrico libri II, Carattoni, Verona.

Euler, L. (1787) Institutiones Calculi Differentialis cum eius usu in Analysi Finitorum ac Doctrina Serierum, I, II, Galeati, Pavia (II ed.; I ed.: 1755).

Euler, L. (1796), Introduction a l’Analyse Infinitésimale, I, II, Barrois, Paris (I ed. in French).

Brunacci, V. (1804), Corso di Matematica sublime, I, II, Allegrini, Firenze.

Lagrange, J.L. (1813), Théorie des fonctions analytiques, Courcier, Paris.

Cauchy, A.L. (1836), Vorlesungen uber die Differenzialrechung, Meyer, Braunschweig.

Lacroix, S.F. (1837), Traité elementaire du Calcul Différentiel et du Calcul Intégral, Bachelier, Paris (V ed.).

Carmichael, R. (1855), A Treatise on the Calculus of Operations, Longman, Brown, Green and Longmans, London.

Sturm, Ch. (1868), Cours d’Analyse, I, II, Gauthier-Villars, Paris.

Carnot, L.N.M. (1881), Réflections sur la métaphisique du Calcul Infinitésimal, Gauthier-Villars, Paris (I ed.: 1797).

Laurent, H. (1885-1887-1888), Traité d’Analyse, I, II, III, Gauthier-Villars, Paris.

 


Syllogismos.it

History and Hermeneutics for Mathematics Education

(Giorgio T. Bagni, Editor)


Back to Library/Biblioteca

Back to Syllogismos.it Main Page

Torna a Syllogismos.it Pagina Principale